US009329875B2

a2 United States Patent (10) Patent No.: US 9,329,875 B2
Gschwind et al. (45) Date of Patent: May 3, 2016
(54) GLOBAL ENTRY POINT AND LOCAL ENTRY 6,016,399 A * 1/2000 Chang GOGF 8/4452
POINT FOR CALLEE FUNCTION 717/142
6,219,830 B1* 4/2001 Eidtetal.ccceeeonnnee. 717/139
H . ; : : 6,321,275 B1* 11/2001 McQuistan et al. ... 719/330
(71) Applicant: g‘ter“atiqnalz‘s‘nrfﬁsy;cgg‘es 6,408,433 BI* 6/2002 Clicketal. .cocuvorr... 717/154
orporation, Armonk, NY (US) 6,523,171 B1* 2/2003 Dupuy GOGF 8/51
717/142
(72) Inventors: Michael K. Gschwind, Chappaqua, NY 6,735,761 Bl* 5/2004 Ogasawara ... GOG6F 9/45516
(US); Ulrich Weigand, Holzgerlingen 717/140
(DE) 6,892,379 B2* 5/2005 Huang GOGF 8/447
717/141
(73) Assignee: INTERNATIONAL BUSINESS 6,971,091 B1* 112005 Amold ... GOeE s
MACHINES CORPORATION, 7,085,789 B1* 82006 Tarditi GOGF 12/0253
7,296,297 B2* 11/2007 Kirkpatrick HO4L 67/2819
(*) Notice: Subject to any disclaimer, the term of this 717/142
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 0 days. (Continued)
OTHER PUBLICATIONS
(21) Appl. No.: 14/263,135 Anonymous, “Application Binary Interface Modeling of Stack Lay-
a1 out and Function Call Sequence for Code Generation and Stack
(22) Filed: Apr. 28, 2014 Management in Retragetable Compilers”; 2012, IP.com; [retrieved
. N on Apr. 21, 2015]; Retrieved from Internet <URL:https://iq.ip.com/
(65) Prior Publication Data preview.html?docid=ipcompad. IPCOM000214382D>;pp. 1-6.*
US 2015/0309810 A1l Oct. 29, 2015 (Continued)
(51) Int.CL Primary Examiner — Xi D Chen
gzgi zjjj 5 5388288 (74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
GOGF 9/45 (2006.01) Steven Bennett
(52) U.S.CL 57 ABSTRACT
CPC GO6F 9/44521 (2013.01); GO6F 8/41 Embodiments relate to a global entry point and a local entry
(2013.01) point for a callee function. An aspect includes executing, by a
i i i rocessor, a function call from a calling function to the callee
(58) Field of Classification Search proce functi 111 lling functi he call
None function. Another aspect includes, based on the function call
See application file for complete search history. being a direct and external function call, entering the callee
’ function at the global entry point and executing prologue code
(56) References Cited in the callee function that calculates and stores a table of

U.S. PATENT DOCUMENTS

5,797,014 A * 8/1998 Gheithccooooin 717/163
5,907,709 A * 5/1999 Cantey GO6F 11/366
717/141
5,909,580 A * 6/1999 Crelier GO6F 11/366
717/141
5,946,489 A * 8/1999 Yellin ..o GO6F 8/41
717/141

contents (TOC) value for the callee function in a TOC regis-
ter. Another aspect includes, based on the function call being
a direct and local function call, entering the callee function at
the local entry point, wherein entering the callee function at
the local entry point skips the prologue code. Another aspect
includes, based on the function call being an indirect function
call, entering the callee function at the global entry point and
executing the prologue code.

6 Claims, 9 Drawing Sheets

COMPILE SOURCE CODE INTO OBJECT CODE BY COMPILER; INSERT GLOBAL ENTRY POINT,
PROLOGUE CODE, AND LOCAL ENTRY POINT INTO EACH CALLEE FUNCTION IN OBJECT CODE
m

S L

RESOLVE FUNCTION CALLS IN OBJECT CODE AS LOCAL OR EXTERNAL;
INSERT BRANCHES TO ENTRY POINTS BASED ON RESOLUTION AND BASED ON WHETHER
FUNCTION CALLS ARE DIRECT OR INDIRECT
302

1T

FOR DIRECT AND LOCAL FUNCTION CALL, USE LOCAL ENTRY POINT IN CALLEE FUNCTION;
CALLING FUNCTION PROVIDES TOC FOR CALLEE IN TOC REGISTER

T

FOR DIRECT AND EXTERNAL FUNCTION CALL, USE GLOBAL ENTRY POINT IN CALLEE FUNCTION;
CALLEE FUNCTION COMPUTE S TOC FROM FUNCTION ADDRESS REGISTER
AND STORES TOC IN TOC REGISTER

I

FOR INDIRECT FUNCTION CALL, USE GLOBAL ENTRY POINT IN CALLEE FUNCTION;
CALLEE FUNCTION COMPUTES TOC FROM FUNCTION ADDRESS REGISTER
AND STORES TOC IN TOC REGISTER

I

FOR FUNCTION CALL OF ANY TYPE TO A CALLEE FUNCTION THAT DOES NOT USE ATOC,
USE LOCAL ENTRY POINT IN CALLEE FUNCTION (OPTIONAL}

308

US 9,329,875 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,307,351 B2* 11/2012 Weigert GOG6F 21/105

717/131

8,490,184 B2* 7/2013 Brinkeretal. 726/22

8,583,939 B2* 11/2013 Leeetal. ... 713/190

8,601,456 B2* 12/2013 Duffyccooeee GOG6F 8/434

717/140

8,910,130 B2* 12/2014 Munster GO6F 8/52

703/22

2005/0273772 Al* 12/2005 Matsakis etal. 717/136

2007/0157178 Al* 7/2007 Koganetal. . .. 717/130

2008/0046870 Al* 2/2008 Nair etal. 717/140

2009/0193400 Al* 7/2009 Baev etal. ... 717/140
2013/0263153 Al 10/2013 Gschwind

2014/0208301 Al* 7/2014 Guan ... GOGF 9/4425

717/140

2015/0261510 Al1* 9/2015 Gschwind GO6F 8/54

717/140

OTHER PUBLICATIONS

Debray, Evans, “Compiler Techniques for Code Compaction”; 2000
ACM,; [retrieved on Jan. 18, 2016]; Retrieved from Internet <URL:

http://dl.acm.org/citation.cfm?id=349233&CFID=74633288 1>; pp.
378-415.*

Merten, Hwu, “Modulo Schedule Buffers”; 2001 IEEE; [retrieved on
Jan. 18, 2016]; Retrieved from Internet <URL: http://dl.acm.org/
citation.cfm?id=564018&CFID=746332881>; pp. 138-149 *
Azeemi, “Multicriteria Energy Efficient Source Code Compilation
for Dependable Embedded Applications™; 2006 IEEE; [retrieved on
Jan. 18, 2016]; Retrieved from Internet <URL: http://iecexplore.iece.
org/stamp/stamp.jsp?tp=&arnumber=4085478>; pp. 1-5.*

Ghica, et al., Automatic Generation of Architecture Model for
Recoonfigurable Build Tools; 2013 IEEE; [[retrieved on Jan. 18,
2016]; Retrieved from Internet <URL: http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=6569256>; pp. 142-146.*

List of IBM Patent or Patent Applications Treated as Related; Oct. 9,
2014; pp. 1-2.

M. Gschwind, et al., “Global Entry Point and Local Entry Point for
Callee Function,” Related Application, U.S. Appl. No. 14/483,538,
filed Sep. 11, 2014; pp. 1-20.

* cited by examiner

US 9,329,875 B2

Sheet 1 of 9

May 3, 2016

U.S. Patent

l Old

201
AHOW3N NIVIN
— _ — 0l [
101 90l GoL
SAMvHdaIl 3d00 103rgo
¥3avo
HIANNIT H3TdNOD QINVHS NOLLYOIddY
A A A A A
y
601 801
H31SI193d HA1SI193H
SS3YAAV N4 001 1oL
HOSS3IO0Hd
001
W3LSAS 431NdINOD

US 9,329,875 B2

Sheet 2 of 9

May 3, 2016

U.S. Patent

¢ Old

S02 202
TV NOILONNAH
NOILONNA (vo07)
WO01T ~ 3377VD
A
0z —
NiH4
NOILONNd |,
vNyaxa) [z%ﬁ.w_dw“_
337VD
€02 90¢ 00z
3000 AAVHEI 3dVHS TIv0 3009 103rg0 NOILYOINddY
NOILONNAH
IVNY3LX3

US 9,329,875 B2

Sheet 3 of 9

May 3, 2016

U.S. Patent

¢ Ol

90g
(I¥NOILJO) NOILONNA 33TV NI LNIOd AHLNI TvD01 38N
‘O0LV 3SN LON S30Ad 1VHL NOILONNS 337Tv0 V OL IdAL ANV 40 T11vO NOILONNS HO4

G0¢
3181934 D01 NI D01 S3HOLS ANV
3181939 SS3HAAY NOILONNd WOd4 D01 S3LNdNOD NOILONNA 337Tv0
‘NOILONNH 33TTvD NI LNIOd AYLNT VOO 3SN “TTvO NOILONNL LOFHIANI 04

1r

¥0€
d31S1934 D01 NI 001 S3HOLS ANV
HALSIOTH SSIHAAY NOILONNH NO¥4 D01 S F1NdINOD NOILONNA 33T77vO
‘NOILONNH 337V NI LNIOd AYINT Tvg0 1D 3SN “TIvO NOILONNA TVYNYILX3 ANV 1O3HId ¥O4

1

€0¢
¥31SI1934 D01 NI 33T1vO JO4 D01 S3AINOYL NOILONNA ONITIVO
‘NOILONNS 33T77VO NI LNIOd AYLNT TVvOOT 3ISN 1TvO NOILONNSL TvO01 ANV LO3HIA HO4

1

20€
1O3HIANI HO LO3dIA 3™V ST1vO NOILONNA
Y3HIIHM NO d3Svd ANV NOILNTOS3Y NO d3Svd SINIOd AYLNT OL SIHONVYYE LH3SNI
TIVNY3LX3 HO TvO01 SY 3d0D 103rgd0 NI STIvO NOILLONNA IAT0S3IH

1

10€
3A02 103rdo NI NOILONNA I3TTvO HOVI OLNI INIOd AYLINT TvOO1dNY ‘3000 IND0T10Hd
‘INIOd AYLN3 V801D 1H3SNI 43 TdNOD A9 3A0D LOIrE0 OLNI 3A0D I0HUNOS ITdNOD

(=]
[<p]

US 9,329,875 B2

Sheet 4 of 9

May 3, 2016

U.S. Patent

v Old

> AYINITIVOOT O

D01 337TVO IHOLS
001 3377V ALVINO TV
AHINTTVEO1D ©
}
09

€0¥ NOILONNL 3371vD

{

}
04

AYINTIVOOT O OL MNIT-ANV-HONVYHY

20¥ NOILONNH ONITIVO

1o
3a09 103r90 NOILYOIddY

US 9,329,875 B2

Sheet 5 of 9

May 3, 2016

U.S. Patent

G Old

» AYINITVOOT O

D01 33TIVO IHOLS
D01 3FTIVO ILVINDTVO
AYINITVEOTD ©
}
09

€0S NOILONNA 3371VvD

{
(LO1S NOILONYLSNI d3ISNNN) dON
9 OL MNIT-ANV-HONVYS

}
04

Z20S NOILONNA SNITIVD

108
33a0O 153rd0O NOILVYOINddv

00s

US 9,329,875 B2

Sheet 6 of 9

May 3, 2016

U.S. Patent

9 Old

$S34AAv N4 O1 HONvY4d
AAYINTTIVOOT O
01 SS3HAAv N4 138
2001 ¥ATIVO IAVS

¥09 an1s 11d

> AYMINTIVOOT O
D01 I3T7VO IHOLS
D01 337V ILVINOTVO
AYINTIVEO 1D ©
}
09

09 NOILONNL 337TVO

I/

D01 ¥3TIVO FHOLSTY
‘9 OL MNIT-ANV-HONVHS
}
04

209 NOILONNA ONITIVD

109
3A09 193rg0 NOILYOITddY

US 9,329,875 B2

Sheet 7 of 9

May 3, 2016

U.S. Patent

/. Old

SAYLINTTIVOOT O
001 IFTIVO IHOILS
001 3371VvO ILVINOTVO

» AYINITVEOTO O
}
09

€0/ NOILONNL 337vO

G0/ AYVdHdIT d3dVHS

SS34AAVY N4 O1 HONvYg
AAYINTTVEOTD ©
Ol SS34Aav N4 138
2001 {31V 3AAVS oy

¥0Z 9nis 11d

— D01 ¥3TVD FHOLSTIH
'O OL MNIT-ANV-HONVHSE

}

04

20Z NOILONNA ONITIVD

104 30D 103rg0 NOILYOINddY

04

US 9,329,875 B2

Sheet 8 of 9

May 3, 2016

U.S. Patent

8 Ol

AYLNITVOOT 29
001 33TV AHOLS
001 3I3TTVvO 31LVvINOTVO

TAYINTTIVOOT LD
D01 IFTIVO FHOLS
001 IFTTVO ALVINOTIVO
> AYINTIVEOTO 1D

AYINTTVEOTD 29 <
}
0zo

8208 NOILONNA 3371Vv0

V208 NOILONN4 33717vO

}

0o

001 {371V FHOLS3IY
-SS34AAV N4 OL MNIT-ANV-HONVYSL
*H31LNIOd NOILONNd WO¥L SS3XAAy N4 avo
D01 ¥3ATVO ANVS

108 NOILONNAL ONITTVO

US 9,329,875 B2

Sheet 9 of 9

May 3, 2016

U.S. Patent

6 Old

206

winipsjy
S|gepeay/a|qessn
Jaindwon

O

06
21607
apon welboly

\ 006

1onpoid welbold
Jaindwon

US 9,329,875 B2

1

GLOBAL ENTRY POINT AND LOCAL ENTRY
POINT FOR CALLEE FUNCTION

BACKGROUND

The present invention relates generally to computer sys-
tems, and more specifically, to global entry point and local
entry point for a callee function.

In computer software, an application binary interface
(ABI) describes the low-level interface between an applica-
tion program and the operating system or between the appli-
cation program and another application. The ABI cover
details such as data type, size, and alignment; the calling
conventions which controls how function arguments are
passed and how return values are retrieved; the system call
numbers and how an application should make system calls to
the operating system; and in the case of a complete operating
system ABI, the binary format of object files, program librar-
ies, and so on. Several ABIs (e.g., the Interactive Unix ABI
allowing to a wide range of programs to run on a variety of
Unix and Linux variants for the Intel x86 architecture) allow
an application program from one operating system (OS) sup-
porting that ABI to run without modifications on any other
such system, provided that necessary shared libraries are
present, and similar prerequisites are fulfilled.

The program development cycle of a typical application
program includes writing source code, compiling the source
code into object files, building shared libraries, and linking of
the object files into a main executable program. Additional
preparation, including loading of the main executable pro-
gram, and loading of the shared libraries for application start-
up occurs before the application is executed on a particular
hardware platform.

The compiler works on a single source file (compile unit) at
a time to generate object files. The compiler generates object
code without knowing the final address or displacement of the
code/data. Specifically, the compiler generates object code
that will access a table of contents (TOC) for variable values
without knowing the final size of the TOC or offsets/ad-
dresses of various data sections. Placeholders for this infor-
mation are left in the object code and updated by the linker A
TOC is a variable address reference table that is utilized, for
example in an AIX environment, to access program variables
in a manner that supports shared libraries and is data location
independent. A similar structure, referred to as a global offset
table (GOT), performs a similar function (e.g., indirect and
dynamically relocatable access to variables) in a LINUX
environment. One difference between a TOC and a GOT is
that a TOC may contain actual data, where a GOT only
contains addresses (pointers) to data. In the Linux PowerPC
64-bit environment the TOC contains the GOT section plus
small data variables.

A static linker combines one or more separately compiled
object files derived from distinct source files into a single
module, and builds a single GOT and/or TOC for the module
that is shared by files in the module. An executing application
includes at least one module, a statically linked module typi-
cally containing the function main() as well as, optionally,
several other functions, sometimes also known as the main
module. Some applications may be statically linked, that is,
all libraries have been statically integrated into the main mod-
ule. Many applications also make use of shared libraries, sets
of utility functions provided by the system or vendors to be
dynamically loaded at application runtime and where the
program text is often shared between multiple applications.

Each module in a computer program may have a different
TOC pointer value. The TOC register or GOT register (re-

10

15

20

25

30

35

40

45

50

55

60

65

2

ferred to hereinafter as the TOC register) may therefore be
saved and restored for each function call, either by a proce-
dure linkage table (PLT) stub code segment, or by the callee
function in conventions where the TOC register is treated as a
preserved (i.e., callee-saved) register.

SUMMARY

Embodiments include a method, system, and computer
program product for a global entry point and a local entry
point for a callee function. An aspect includes executing, by a
processor, a function call from a calling function to the callee
function. Another aspect includes based on the function call
being a direct and external function call, entering the callee
function at the global entry point of the callee function and
executing prologue code in the callee function that calculates
and stores a table of contents (TOC) value for the callee
function in a TOC register. Another aspect includes based on
the function call being a direct and local function call, enter-
ing the callee function at the local entry point of the callee
function, wherein entering the callee function at the local
entry point skips the prologue code. Another aspect includes
based on the function call being an indirect function call,
entering the callee function at the global entry point and
executing the prologue code.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as embodiments is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the embodiments are apparent
from the following detailed description taken in conjunction
with the accompanying drawings in which:

FIG. 1 depicts a computer system for a global entry point
and alocal entry point for a callee function in accordance with
an embodiment;

FIG. 2 depicts local and external function calls accordance
with an embodiment.

FIG. 3 depicts a process flow for a global entry point and a
local entry point for a callee function in accordance with an
embodiment;

FIGS. 4-6 illustrate examples of use of a local entry point
for a local and direct function call;

FIG. 7 illustrates an example of use of a global entry point
for an external and direct function call;

FIG. 8 illustrates an example of use of a global entry point
for an indirect function call; and

FIG. 9 depicts a computer-readable medium according to
an embodiment.

DETAILED DESCRIPTION

Embodiments of a global entry point and a local entry point
for a callee function are provided, with exemplary embodi-
ments being discussed below in detail. A global entry point,
accompanied by prologue code, and a local entry point may
be inserted at the beginning of each function in application
object code by, for example, a compiler. During runtime,
entry into a callee function at the global entry point may
trigger the prologue code, which calculates and saves a TOC
pointer value for the callee function. Entry into the callee
function at the local entry point may skip the TOC-related
operations in the prologue code, and the calling function
provides the TOC for the callee function in the TOC register.
Different types of function calls (i.e., local and direct, exter-

US 9,329,875 B2

3

nal and direct, or indirect) may use different entry points into
a callee function. The calculation and saving of the TOC
pointer value for the callee function may be performed based
avalue that is stored in a function address register, which may
be R12 in some embodiments. The TOC register may be R2 in
some embodiments.

A function call in application object code is either local or
external, and also either direct or indirect. For a local function
call, from a calling function to a callee function that is in the
same module as the calling function, the TOC pointer value is
the same for the calling function and the callee function. For
an external function call, from a calling function to a callee
function that is in a different module from the calling func-
tion, the TOC pointer value is different for the calling function
and the callee function. Whether a function call is local or
external is determined at resolution time, which may occur at
various times, e.g., at compile time, link time, or load time.
When the type of a function call is resolved, a branch to the
appropriate entry point (i.e., local or global) may be inserted
in conjunction with the function call. Whether a function call
is direct or indirect is indicated in the source code. A direct
function call refers to the callee function by its symbol, or
name. An indirect function call refers to the callee function by
a function pointer which holds a value of an address corre-
sponding to the callee function; the value of the function
pointer may change during execution of the application object
code.

For a direct, local function call, the calling function pro-
vides the TOC for the callee function in the TOC register;
therefore, for a direct, local function call, the local entry point
into the callee function is used. For a direct, external function
call, the calling function does not know the TOC for the callee
function; therefore, for a direct, external function call, the
global entry point into the callee function is used. For an
indirect function call, it is not known in advance whether the
function call will be local or external; therefore, for an indi-
rect function call, the global entry point into the callee func-
tion is also used. In further embodiments, if a callee function
does not require a TOC, regardless of the type of the function
call, the local entry point into the callee function is used.

FIG.1 illustrates an embodiment of a computer system 100
for local and global entry points for a callee function. Com-
puter system 100 comprises a processor 101 and a main
memory 102. Application object code 103, which is gener-
ated from program source code (not shown) by a compiler
such as compiler 105, comprises a plurality of functions, and
is stored in main memory 102 for execution by processor 101.
The application object code 103 may be generated by a com-
piler that is located on a different computer system from
computer system 100. Shared library code 104 comprise
functions that are external to application object code 103 and
that may be called during execution of application object code
103 via external function calls (i.e., calls to functions in other
modules). Linker 106 and loader 107 comprise runtime com-
ponents; the linker 106 links the application object code 103
before the application object code 103 is executed by the
loader 107. TOC register 108 is located in processor 101.
TOC register 108 stores a current value of a TOC pointer for
the currently active function of application object code 103 or
shared library code 104 (i.e., the function that is currently
executing). The TOC register 108 may be general purpose
register R2 in some embodiments. In further embodiments of
a computer system such as computer system 100, the TOC
register 108 may store a GOT value instead of'a TOC pointer
value. Function address register 109 is also located in proces-
sor 101, and holds an address of a currently executing func-
tion. Function address register 109 may be general purpose

40

45

55

4

register R12 in some embodiments. In some embodiments,
the computer system 100 may further comprise another
object code module that is distinct from the application object
code 103 and the shared library code 104, and the other object
code module may also contain functions that are called by
application object code 103 via external function calls.

FIG. 2 illustrates an embodiment of a local function call
205 and an external function call 206. Application object code
200 may comprise application object code 103 of FIG. 1, and
shared library 203 may comprise shared library code 104 of
FIG. 1. Calling function 201 and callee function 202 are part
of application object code 200, and callee function 204 is part
of'shared library 203. Ifthe calling function 201 and the callee
function 202 are both part of application object code 200, the
callee function 202 is local to the calling function 201 and the
call is a local function call 205, and the calling function 201
and the callee function 202 have the same TOC pointer value.
If the calling function 201 is part of the application object
code 200, and the callee function 204 is in the shared library
203, then the callee function 204 is external to the calling
function 201 and the call is an external function call 206, and
the calling function 201 and the callee function 204 have
different TOC pointer values. When calling function 201
performs an external function call to callee function 204,
when execution passes from the calling function 201 to the
callee function 204, the value of the TOC pointer of the
calling function 201 is saved from TOC register 108 to a stack
frame corresponding to the calling function 201 in the runt-
ime stack, and the TOC pointer value of callee function 204 is
stored in TOC register 108. When the callee function 204
exits and execution passes back to the calling function 201,
the value of the TOC pointer of the calling function 201 is
restored to the TOC register 108 from the stack frame corre-
sponding to the calling function 201. FIG. 2 is shown for
illustrative purposes only; any number of functions may be
included in application object code 200 and shared library
203, and these functions may call one another in any appro-
priate manner. In some embodiments, the computer system
100 may further comprise another object code module that is
distinct from the application object code 103/200 and the
shared library code 104/203, and the other object code mod-
ule may also contain functions that are called by application
object code 103/200 via external function calls such as exter-
nal function call 206. There may also be local function calls
between functions that are both within the same shared
library code 104/203.

FIG. 3 illustrates an example of a method 300 for a global
entry point and a local entry point for a callee function in
accordance with an embodiment. FIG. 3 is discussed with
reference to FIGS. 1 and 2. First, in block 301, before runtime,
a compiler, such as compiler 105, generates application
object code 103 (and, in some embodiments, shared library
code 104) from program source code (not shown). The com-
piler that generates application object code 103 (and, in some
embodiments, shared library code 104) may be located on
another computer system that is distinct from computer sys-
tem 100. In some embodiments, another compiler on a third
distinct computer may generate shared library code 104. Dur-
ing compilation, the compiler 105 inserts a global entry point
atthe beginning of each callee function, followed by prologue
code comprising instructions to compute and save the TOC
for the callee function, followed by a local entry point. The
main body of a function is located after its local entry point. It
is also indicated in the program source code whether each
function call is direct or indirect; a direct function call calls
the calling function by name, while an indirect function call
references a function pointer. Next, in block 302, the function

US 9,329,875 B2

5

calls in the calling functions in the application object code
103 are resolved as being local or external. The resolving may
be performed by compiler 105, linker 106, or loader 107, in
various embodiments; resolution may occur at different times
for different function calls in the same application object code
103. At the time of resolution of a function call, the compiler
105, linker 106, or loader 107 inserts instructions that branch
from the function call in the calling function to the global
entry point or the local entry point of the callee function of the
function call, depending on the type of function call (e.g.,
direct and local, direct and external, or indirect), in addition to
other instructions, such as PLT stubs, as needed. This is
discussed in further detail with respect to blocks 303-306, and
FIGS. 4-8.

Blocks 303-305, and, optionally, block 306, are performed
during execution of the application object code 103; for each
function call that is encountered during execution of applica-
tion object code 103, one of blocks 303-306 is performed. In
block 303, a direct and local function call is executed. For the
direct and local function call, the caller and callee functions
have the same TOC, which is provided by the calling function
for the callee function in the TOC register 108. Therefore, the
function call in the caller function branches to the local entry
point in the callee function, skipping the global entry point
and the prologue code comprising the callee TOC computa-
tion and save instructions. Various examples of direct and
local function calls are discussed below with respect to FIGS.
4-6.

Inblock 304, a direct and external function call is executed.
For the direct and external function call, the caller and callee
functions have different TOC values, so the callee function
must calculate its TOC and store the calculated TOC in the
TOC register 108. Therefore, the function call in the caller
function branches to the global entry point in the callee func-
tion, executes the prologue code to perform TOC computa-
tion and save the computed TOC in the TOC register 108, and
then proceed past the local entry point into the body of the
callee function. An example of a direct and external function
call is discussed below with respect to FIG. 7.

In block 305, an indirect function call is executed. For the
indirect function call, the TOC value of the callee function is
not known in advance, so the callee function must calculate its
TOC and store the calculated TOC in the TOC register 108.
Therefore, the function call in the caller function branches to
the global entry point in the callee function, executes the
prologue code to perform TOC computation and save the
computed TOC in the TOC register 108, and then proceeds
past the local entry point into the body of the callee function.
An example of an indirect function call is discussed below
with respect to FIG. 8. Lastly, in block 306, a function call to
a callee function that does not use a TOC is executed. In some
embodiments, for such a function call, the local entry point in
the callee function is used, regardless of the type of the func-
tion call. In further embodiments, the compiler may deter-
mine at compile time that the callee function does not use a
TOC, and, based on that determination, omit insertion of the
prologue code into the callee function during block 301.

FIGS. 4-6 illustrate examples of use of a local entry point
for alocal and direct function call; in FIGS. 4-6, resolution of
the function call occurs at different times, e.g., compile time,
which is earliest, link time, or load time, which is latest. In
each of FIGS. 4-6, the calling function and the callee function
have the same TOC, and the TOC is provided for the callee
function by the calling function in the TOC register 108. In
example 400 of FIG. 4, resolution that the function call from
calling function F(') 402 to callee function G() 403 is a local
function call (i.e., F() and G() are both in application object

10

15

20

25

30

35

40

45

50

55

60

65

6

code 401) occurs during compile time. The function call from
calling function F() 402 to callee function G() 403 is also
determined to be a direct function call because G() is called
in F() by name. Therefore, the compiler 105 inserts a direct
branch to the local entry point in callee function G() 403 into
calling function F() during compilation. For the function call
from F() to G(), the global entry point in function G() 403,
and the prologue code that performs computation and storage
of'the TOC for function G() 403, are skipped.

In example 500 of FIG. 5, resolution that the function call
from calling function F() 502 to callee function G() 503 is a
local function call (i.e., F() and G() are both in application
object code 501) occurs during link time. The function call
from calling function F() 502 to callee function G() 503 is
also determined to be a direct function call because G() is
called in F() by name. Therefore, the linker 106 inserts a
branch to the local entry point in callee function G() 503 into
calling function F() during link time. For the function call
from F() to G(), the global entry point in G() 503, and the
prologue code that performs computation and storage of the
TOC for G() 503, are skipped.

In example 600 of FIG. 6, resolution that the function call
from calling function F()) 602 to callee function G() 603 is a
local function call (i.e., F() and G() are both in application
object code 601) occurs during load time. The function call
from calling function F() 602 to callee function G() 603 is
also determined to be a direct function call because G() is
called in F() by name. Therefore, the linker 106 generates a
PLT stub 604 and inserts a branch to the PLT stub 604 into
calling function F(') 602. The PLT stub 604 stores the TOC of
the calling function F() 602 in the stack frame associated with
F() in the runtime stack, loads a final destination address to be
determined by the loader 107 at load time into the function
address register 109, and then branches to the address in the
function address register 109. In this example, the loader 107
determines that the address of the local entry point in callee
function G(') 603 should be used. The linker 106 also inserts
code into the calling function F() to restore its TOC from the
stack frame associated with F() in the runtime stack after the
call to G() has returned. For the function call from F() to
G(), the global entry point in G(') 603, and the prologue code
that performs computation and storage of the TOC for G()
603, are skipped.

FIG. 7 illustrates an example of use of a global entry point
for an external and direct function call. In example 700 of
FIG. 7, resolution that the function call from calling function
F()702 to callee function G() 703 is an external function call
(i.e., F()and G() are in the different respective modules, e.g.,
application object code 701 and shared library 705) occurs
during load time. The function call from calling function F()
702 to callee function G() 703 is also determined to be a direct
function call because G() is called in F() by name. Therefore,
the linker 106 generates a PLT stub 704 and inserts a branch
to the PLT stub 704 into calling function F() 702. The PLT
stub 704 stores the TOC of the calling function F(') 702 in the
stack frame associated with F() in the runtime stack, loads a
final destination address to be determined by the loader 107 at
load time into the function address register 109 and then
branches to the address in the function address register 109. In
this example, the loader 107 determines that address of the
global entry point in callee function G() 703 should be used.
The linker 106 also inserts code into the calling function F()
to restore its TOC from the stack frame associated with F() in
the runtime stack after the call to G() has returned. After
entering callee function G() 703 at the global entry point, the
prologue code performs calculation of the TOC for callee
function G() 703 and storing of the calculated TOC in the

US 9,329,875 B2

7

TOC register 108 before proceeding with execution of the
callee function G(') 703. The TOC for callee function G() 703
may be calculated based on adding an offset value to the value
that is stored in the function address register 109.

FIG. 8 illustrates an example of use of a global entry point
for an indirect function call. In example 800 of FIG. 8, it is
determined that the function call from calling function F()
802 to callee function G1() 802A or callee function G2()
802B is an indirect function call (i.e., the function call in F()
is a reference to a pointer that holds an address that points to
the callee function; the pointer value may be changed during
execution) occurs during compile time. In various embodi-
ments, calling function F() 802, callee function G1() 802A,
and callee function G2() 802B may be in the same module, or
in different modules. The compiler 105 inserts an instruction
into the calling function F() 801 to store the TOC of the
calling function F() 801 in the stack frame associated with
F() in the runtime stack, load the address that is stored in the
function pointer (PTR) into the function address register 109,
and then branch to the loaded address, which branches to the
global entry point in either callee function G1() 802A or
G2() 802B. The compiler 105 also inserts an instruction into
the calling function F() to restore its TOC from the stack
frame associated with F() after the call has returned. In each
of callee functions G1() 802A or G2() 802B, the TOC for the
callee function is calculated and stored in the TOC register
108 by the prologue code before proceeding with execution of
callee function G1() 802A or G2() 802B. The TOC for callee
function G1() 802A or G2() 802B may be calculated based
on adding an offset value to the value that is stored in the
function address register 109.

Technical effects and benefits include reduction in unnec-
essary TOC operations during execution of application object
code.

Referring now to FIG. 9, in one example, a computer
program product 900 includes, for instance, one or more
storage media 902, wherein the media may be tangible and/or
non-transitory, to store computer readable program code
means or logic 904 thereon to provide and facilitate one or
more aspects of embodiments described herein.

The present invention may be a system, a method, and/or a
computer program product. The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present inven-
tion.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an elec-
tronic storage device, a magnetic storage device, an optical
storage device, an electromagnetic storage device, a semicon-
ductor storage device, or any suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con-
strued as being transitory signals per se, such as radio waves
or other freely propagating electromagnetic waves, electro-

10

15

20

25

30

35

40

45

50

55

60

65

8

magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler instruc-
tions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. The computer readable program instructions
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be pro-
vided to a processor of a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions,
which execute via the processor of the computer or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read-
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro-
grammable data processing apparatus, and/or other devices to
function in a particular manner, such that the computer read-
able storage medium having instructions stored therein com-
prises an article of manufacture including instructions which

US 9,329,875 B2

9

implement aspects of the function/act specified in the flow-
chart and/or block diagram block or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer implemented
process, such that the instructions which execute on the com-
puter, other programmable apparatus, or other device imple-
ment the functions/acts specified in the flowchart and/or
block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func-
tions noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts or carry out combinations of special purpose hardware
and computer instructions.

The descriptions ofthe various embodiments of the present
invention have been presented for purposes of illustration, but
are not intended to be exhaustive or limited to the embodi-
ments disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments. The
terminology used herein was chosen to best explain the prin-
ciples of the embodiments, the practical application or tech-
nical improvement over technologies found in the market-
place, or to enable others of ordinary skill in the art to
understand the embodiments disclosed herein.

What is claimed is:

1. A computer system for a global entry point and a local
entry point for a callee function, the system comprising:

a memory; and

aprocessor, communicatively coupled to said memory, the

computer system configured to perform a method com-
prising:

executing, by the processor, a function call from a calling

function to the callee function, the executing compris-
ing:

15

20

25

30

35

40

45

50

10

based on the function call being a direct and external func-
tion call, entering the callee function at the global entry
point of the callee function and executing prologue code
in the callee function that calculates and stores a table of
contents (TOC) value for the callee function in a TOC
register, wherein the TOC value for the callee function is
calculated by the prologue code based on a function
address register and an offset;

based on the function call being a direct and local function
call, entering the callee function at the local entry point
of the callee function, wherein entering the callee func-
tion at the local entry point skips the prologue code; and

based on the function call being an indirect function call,
entering the callee function at the global entry point and
executing the prologue code;

wherein the global entry point, prologue code, and local
entry point are inserted into the callee function by a
compiler, such that the compiler inserts the global entry
point at the beginning of the calling function, inserts the
prologue code directly after the global entry point, and
inserts the local entry point directly after the prologue
code and before body of the callee function.

2. The system of claim 1, wherein whether the function call
is a local function call is resolved by a compiler or a linker,
and wherein, based on the function call being the direct and
local function call, a direct branch to the local entry point in
the callee function is inserted into the calling function by the
compiler or the linker.

3. The system of claim 1, wherein whether the function call
is a local function call is resolved by a loader, and wherein,
based on the function call being the direct and local function
call, a branch to a procedure linkage table (PLT) stub is
inserted into the calling function by the linker, and the PLT
stub branches to the local entry point in the callee function.

4. The system of claim 1, wherein whether the function call
is an external function call is resolved by a loader, and
wherein, based on the function call being the direct and exter-
nal function call, a branch to a procedure linkage table (PLT)
stub is inserted into the calling function by the linker, and the
PLT stub branches to the global entry point in the callee
function.

5.The system of claim 1, wherein the calling function loads
a function pointer address that points to the global entry point
in the callee function based on the function call being the
indirect function call.

6. The system of claim 1, further comprising, based on the
callee function comprising a function that does not use a
TOC, entering the callee function at the local entry point.

#* #* #* #* #*

